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ABSTRACT: Graph-based architectures are becoming increas-
ingly popular as a tool for structure generation. Here, we introduce
novel open-source architecture HyFactor in which, similar to the
InChI linear notation, the number of hydrogens attached to the
heavy atoms was considered instead of the bond types. HyFactor
was benchmarked on the ZINC 250K, MOSES, and ChEMBL data
sets against conventional graph-based architecture ReFactor,
representing our implementation of the reported DEFactor
architecture in the literature. On average, HyFactor models
contain some 20% less fitting parameters than those of ReFactor.
The two architectures display similar validity, uniqueness, and
reconstruction rates. Compared to the training set compounds, HyFactor generates more similar structures than ReFactor. This
could be explained by the fact that the latter generates many open-chain analogues of cyclic structures in the training set. It has been
demonstrated that the reconstruction error of heavy molecules can be significantly reduced using the data augmentation technique.
The codes of HyFactor and ReFactor as well as all models obtained in this study are publicly available from our GitHub repository:
https://github.com/Laboratoire-de-Chemoinformatique/HyFactor.

■ INTRODUCTION
Nowadays, deep neural networks (DNNs) play a significant
role in drug and material discovery, being used for property
prediction,1 de novo design,2 and computer-aided retrosyn-
thesis.3 One of the most widely used DNN architectures is the
autoencoder (AE).4 It is able not only to encode chemical
structures in their latent representation but also to generate
new compounds by decoding sampled latent vectors using a
decoder subnetwork.
To generate new molecular structures, the majority of AEs

use SMILES strings5 as an input, which allows one to employ
the power of natural language processing (NLP) techniques.
Although SMILES seems suitable for de novo design tasks, the
latent representation of text strings may not reflect chemical
similarity relationships between considered structures.
Graph-based AE (GAE) architectures6 serve as a valuable

alternative to the SMILES-based ones. They present a
chemical structure as a graph in which nodes and edges
encode atoms and chemical bonds, respectively. GAEs have
three fundamental advantages over SMILES-based autoen-
coders. First, no specific order of graph traversal is required,
which solves the problem of fixing the canonical ordering of
atoms or training on random ordering. Second, a graph object
does not need to follow specific grammar rules, such as
opening and closing brackets, cycle numbering, etc., which
seriously limits the generation ability of neural networks.

Notice that different non-canonical SMILESs describing the
same structure may be embedded to different latent vectors.
Finally, GAEs always generate graph objects, which, in turn,
allows for a meaningful chemical analysis of errors including
detection of graph disconnectivity and erroneous valence.
A molecular graph can be represented by an ensemble of

atom vectors and bond matrices, which, in turn, can be
transformed into its vector representation using graph
convolutional networks (GCN).7 Once a latent vector is
obtained, it can be decoded using either single-shot or iterative
decoders. Single-shot decoders generate atoms and bonds in a
graph in a single pass.6,8 Their training is fast, but simultaneous
generation of atom vectors and bond matrices is technically
challenging.9 In contrast, iterative decoders create atoms and
bonds sequentially one by one until a molecule is
reconstructed.10 Iterative decoders can be categorized into
two classes. The first class generates atom vectors one by one
until vectors of all atoms are sampled. These vectors are then
used to extract atom and bond types. For example, in the
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autoregressive method, the generation of the next vector is
based on previously created atom vectors.11 Another popular
approach employs a recurrence-based generation where the
next atom vector is generated from a hidden (or difference)
vector updated at every step.12 The second class of decoders
uses a Markov decision process. In contrast with previous
methods, they require the explicit creation of the molecule’s
substructure at each step of generation. To achieve that, they
perform several actions such as “creation of atoms” and
“creation of bonds” until the molecule is generated.10

However, iterative generation requires a much more complex
and slow network architecture compared to single-shot
autoencoders.8 One of the most efficient recurrence-based
iterative decoder architectures was recently implemented in the
DEFactor tool reported by Assouel et al. in the arXiv e-print.11

The encoder in DEFactor is a multi-layer GCN, whereas the
decoder combines the long short-term memory (LSTM)13 cell
for atomic vector generation with a new adjacency matrix
defactorization procedure.
Typically, the GCN employed by the encoder subnetwork in

GAEs computes the neighbors’ messages within each bond-
type specific channel. For this reason, it is necessary to store up
to four bond-type-specific adjacency matrices and specific
trainable weight matrices. This takes a lot of memory and
requires numerous mathematical operations with the corre-
sponding computational graph. A complex iterative process of
atom and bond “creation” and related high memory and time
costs prevent GAE architectures from becoming widely used.
In this paper, we propose an alternative to conventional

structure encoding, which may help reduce both the required
GPU memory and the model training time. Instead of
considering different bond types, we propose to use the
number of hydrogens attached to each heavy atom, similar to
the InChI linear notation.14 Together with an adjacency
matrix, this information is sufficient to reproduce molecular
structures. Also, it solves the problem of a standard
representation of functional groups and aromaticity. In this
case, a molecular graph can be represented by three objects:
(1) a vector of atoms, (2) a vector of hydrogen counts, and (3)
a binary adjacency matrix. The above approach was
implemented in a new hydrogen-count labeled graph-based
defactorization (HyFactor) GAE architecture. In HyFactor, a
DNN is combined with the algorithm needed to convert a

regular molecular graph to a hydrogen-count labeled graph (a
graph where a certain number of hydrogens is assigned to each
heavy atom) and back.
In order to assess the efficiency of the new architecture

compared to conventional GAE, we have decided to compare
HyFactor with DEFactor. However, neither DEFactor codes
nor neural network hyperparameters (e.g., the number of
convolutional layers in the encoder or the batch size, etc.)
needed for re-implementation of this tool were provided in the
original publication.11 Therefore, we attempted to re-imple-
ment and further improve the DEFactor architecture in its
advanced version referred here as ReFactor. Here, we describe
the HyFactor and ReFactor architectures and report the
benchmarking results on ZINC250K, ChEMBL v. 27, and
MOSES data sets in the reconstruction and generation tasks.

■ METHODS
Data and Curation. Three data sources were used:

ZINC250K benchmarking data set extracted from the ZINC
database4 by Kusner et al.,15 MOSES data set from the
MOSES package (v. 1.0),16 and ChEMBL database (v. 27).17

All sets were standardized with ChemAxon JChem’s utilities18

using the following procedures: (1) dearomatization, (2)
isotope removal, (3) stereo mark removal, (4) explicit
hydrogen removal, (5) small fragment removal, (6) solvent
removal, (7) salt strip, (8) neutralization of charges, (9)
functional group transformation, (10) selection of the
canonical tautomer form of the molecule, (11) aromatization,
(12) duplicate removal, and (13) dearomatization. The order
of atoms in standardized structures was defined by the
canonical SMILES string produced by ChemAxon JChem.
Some 1.7K structures were removed from the ZINC250K

data set as a result of the cleaning procedure. The cleaned set
was split into training, validation (tuning), and test sets as
reported by Kusner et al.15 The validation set was used for
early stopping.19 The test set consisted of 5K predefined
molecules, and the remaining structures were randomly split
into training and validation sets in a ratio of 9:1. Note that
several duplicates were found in ZINC250K (see Table S1)
due to the presence of stereoisomers in the data set. This may
cause some overestimation of the performance of the earlier
reported models.

Figure 1. Heavy-atom count distribution in studied data sets.
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The MOSES data set is a benchmarking set for generative
models (details are given in the Supporting Information). It
was analyzed with the proposed standardization procedure;
however, no mistakes were found. Therefore, it was used as it
is. The original “training” set was split into training and
validation sets in a 4:1 ratio.
The ChEMBL database was standardized by the same

workflow as the ZINC250K data set. The initial database
consisted of 1.9M molecules, and it was reduced to 1.6M of
standardized structures. The prepared data set was additionally
analyzed in terms of the frequency of atom types (Figure S1).
Sixty unique atomic types (including information on atomic
charges) were found in ChEMBL, and molecules containing
only 15 atomic types (C, O, N, S, F, Cl, N+, O−, Br, P, I, N−, B,
Si, and Se) have been retained according to the threshold of
1000. The compounds containing less than 5 and more than
50 heavy atoms have been discarded due to their under-
representation. The filtrated ChEMBL data set was then split
into a training set (80% of data or 1.3M molecules) and a test
set (20% of data or 327K molecules). We did not use a
validation set for early stopping since, starting from 100
epochs, the model performance parameters (the loss and
reconstruction rate) practically did not vary. The modeling was
stopped at 150 epochs.
All chemical structures from each data set have been

kekulized in order to avoid a need to introduce an additional
aromatic bond type for the ReFactor architecture. The latter
would increase the size of the graph-based architecture, slow
down the calculations, and decrease the number of valid
structures in sampling.
Both the ChEMBL and ZINC250K data sets have a similar

distribution of heavy atom counts (Figure 1). However, the
MOSES data set differs from both, and most of the structures
lie in the range from 16 to 26 heavy atoms. For some
computational tests, the ChEMBL database was enriched by
460K virtual structures bearing more than 35 heavy atoms. The
heavy-atom distribution of the enriched ChEMBL
(E_ChEMBL) is shown in Figure 1.
Hydrogen-Count Labeled Graph. In the hydrogen-count

labeled graph (HLG), only the connections between atoms
and the count of hydrogens connected to the atoms are taken
into account (see Figure 2). The formal charge of an atom is
used as a vertex label. Such a representation has already been
tested in the development of structure−property models with

graph convolution networks.20 The implemented workflow
first transformed a molecular graph to HLG and then to three
complementary representations: adjacency matrix, atomic
types, which include the atom symbol and charge, and
hydrogen-count vectors (Figure 2). The conversion from a
molecular graph to HLG and back was performed with the
help of the CGRtools toolkit.21

Autoencoders Based on Conventional (DEFactor and
ReFactor) and Hydrogen-Count (HyFactor) Representa-
tions of the Molecular Graph. All three autoencoder
architectures used in this work, namely, DEFactor (reported
earlier)11 and ReFactor and HyFactor (both developed in this
work), are depicted in Figure 3. Their detailed description is
given below.

DEFactor Architecture. The encoder in DEFactor uses one-
hot embedding to represent atoms in the molecular graph and
consists of several layers of edge-specific graph convolution
networks7,22 that can be expressed as
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where Hl is the atoms’ vectors after the lth graph convolution
layer, Eb is a bond-type specific adjacency matrix, Db is the
corresponding bond-type specific diagonal degree matrix, Wb
and Wself are trainable matrices of weights for every bond type
b and weights for self-channel, respectively, and ReLU is the
rectifier activation function. The aggregation of atomic vectors
is performed with the help of a long short-term memory
(LSTM)13 unit followed by a one-layer perceptron (see Figure
3a), giving a molecular latent vector.
In the decoder, the molecular latent vector is unpacked into

a set of atomic embeddings, H̃, where each hi is predicted using
the LSTM layer. Thus, the entire matrix of atoms’ embedding
is restored. Next, it passes through two subunits in parallel
where the first one is represented by a multilayer perceptron
(MLP) with the sof tmax activation function that returns
predictions of atom types (Ã). The second subunit realizes the
multichannel defactorization procedure23 needed to recon-
struct the bond matrix according to eq 2

= +E HW H( bias)b b
T (2)

Figure 2. Hydrogen-count labeled graph representation. Here, the molecular graph (hydrogens are hidden) is converted into a graph with no edge
features, while the nodes have two features, namely, the type of atoms and number of hydrogens.
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where Ẽb is the reconstructed adjacency matrix for a bond type
b, H̃ is the matrix of the recovered atoms’ embeddings hi,Wb is
a diagonal matrix of weights for the bond type b, and σ is the
sigmoid activation function. A certain probability is returned
for each bond type between each pair of atoms, and the bond
type with the highest probability is selected for the
reconstruction. A three-step procedure including teacher
forcing was used to speed up the DEFactor training. Within
each step, trainable weights of a certain part of the network
were frozen and then relaxed at the next step.

The loss function is a sum of categorical cross-entropy for
atom predictions (eq 3) and binary cross-entropy for bond
predictions (eq 4)

= ×L
n

A A
1

log( )atoms (3)

= [ × + × ]L
n

E E E E1
log( ) (1 ) log( )

b
b b b bbonds 2

4

(4)

Figure 3. Architectures of different autoencoders considered in this work: (a) DEFactor,11 (b) ReFactor, and (c) HyFactor. BN refers to the batch
normalization layer, and GRU refers to the gated recurrent unit. Parameters for each experiment are specified in Table S2.
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where A is the one-hot matrix for atom types, Ã is the
predicted atom-type probability matrix, n is the number of
atoms in a molecule, and Eb is the real adjacency matrix for
bond type b.
It should be noted that some important information like the

number of GCN layers as well as the dimensionality of the
atoms’ embedding matrix was missed in the original
publication by Assouel et al.11 Therefore, we reimplemented
the DEFactor architecture with some modifications that
improved its performance, at least, for large molecules (see
below).
ReFactor Architecture. The ReFactor architecture keeps the

main ideas of the DEFactor model. Some parts of DEFactor
that were explained well were kept and reimplemented in the
Tensorflow package24 v. 2.6. Others were modified or replaced
by new layers. Thus, it was decided that token embedding is a
more powerful and flexible technique than a simple one-hot
embedding. Hence, the latter was replaced by a token
embedding layer.
To stabilize the learning process, the GCN from the

DEFactor was completed by a layer normalization (LN)25

layer among the atoms’ features (parameter “axis = −2”) and
masking of imaginary atoms (padding):

= × ×

+

+
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Ç
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b
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1 1/2 1/2

self
(5)

In each experiment, the number of GCN layers was fixed at
five. The dimensionality of the input and output vectors did
not change across the layers.
For atomic vector aggregation, LSTM units in DEFactor

were replaced with bidirectional gated recurrent units26 (GRU;
see Figure 3b). The output of GRUs was passed to the dense,
batch normalization (BN), and ReLU activation layers to
obtain the molecular latent vector. A teacher-forcing technique
applied in the original article was skipped since no predictive
performance improvement was detected in our experiments.
In the decoder, the atoms’ vectors were generated by two

sequentially connected GRU layers and a dense layer in
between headed by a RepeatVector layer (see Figure 3b). In
such a case, the input molecular latent vector was repeated N
times (i.e., according to the maximal molecular graph size) and
passed through the first GRU, and intermediate atom vectors
were returned. These intermediate vectors were then
concatenated with the repeated molecular vectors. They
passed first through a perceptron layer with a ReLU activation

function and then through the second GRU layer. Further, the
hidden vectors of the second GRU were used as the retrieved
atoms’ embeddings. For the atom reconstruction, the retrieved
atoms’ embeddings were passed through two dense layers with
the output dimensionality equal to the number of atom types.
Activation of the first layer was ReLU, and activation of the
second was the sof tmax function. During the bond
reconstruction step, the atoms’ embeddings were forwarded
to a dense layer with the output dimensionality of the latent
vector divided by 8 and ReLU activation and then to the
defactorization layer.
These and other minor changes allowed us to handle

molecules containing up to 50 heavy atoms (see Results and
Discussion). Unless specified, the dimensionality of the atom
embedding vectors as well as all internal and latent vectors was
the same. Parameters for each experiment are specified in
Table S2. All layers were taken with standard parameters if not
specially mentioned.

HyFactor Architecture. The main changes compared to
ReFactor concern the steps of graph convolution and graph
reconstruction from the atoms’ vectors (see Figure 3c). First,
the HLG was transformed to the atoms’ (dimension of 64) and
hydrogens’ (dimension of 4) embeddings. These embeddings
were concatenated and passed through the dense layer with the
ReLU activation function. The graph convolution network was
similar to that in ReFactor

= × [ ×

+ ]

+H D ED H W

H W

mask ReLU LN( )

LN( )

l l l

l l

1 1/2 1/2
neighbors

self (6)

where E and D are adjacency and degree matrices of HLG, and
the other designations are the same as in eqs 1 and 2. Here, the
number of the training parameters is twice less than that for
ReFactor GCN.
At the graph reconstruction stage, the number of hydrogens

and atom types were predicted similar to using dense layers
with the sof tmax activation function. The maximal number of
hydrogens attached to an atom was equal to 3. The adjacency
matrix was reconstructed using the defactorization procedure
(eq 2), ignoring bond types; only one trainable diagonal Wb
matrix was used.
The initialization of weights for each layer was performed

with HE normal initialization.27 Training of the architecture
was performed using the AdaBelief optimizer28 with default
parameters. Exponential learning decay was applied in order to
maintain the training stability.
Sampling Procedure. New molecular structures were

generated by sampling latent vectors in the vicinity of the
known molecules.29 Here, the latent vectors of selected

Figure 4. Sampling of new structures from the autoencoder latent space.
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molecules from the training set were used as seeds (Figure 4).
During generation, these latent vectors were multiplied by
noise vectors composed of random numbers generated from a
probability density function of a log-normal distribution
followed by their decoding to a molecular graph.
In order to effectively explore the chemical space around the

given seed, the “mean” parameter was set to 0, whereas the
“standard deviation” was systematically varied. Generally, the
probability of generating more dissimilar structures increases
with the “standard deviation” value.

■ RESULTS AND DISCUSSION
Reconstruction Rate of Different Graph Autoen-

coders. The performance of the autoencoders’ model is
measured by the reconstruction rate representing a percentage
of correctly reconstructed structures in the considered data set.
Reconstruction rate values for several SMILES-based and
graph-based autoencoders on the ZINC 250K set are reported
in Table 1.

One can see that the performances of graph-based and
SMILES-based architectures are similar. The leading graph-
based architecture (TSGCD) has a reconstruction rate that is
only 2% lower than the best SMILES-based autoencoder
(rebalanced VAE). The DEFactor architecture also demon-
strates high performance, which is only 1% lower than the
leading graph-based autoencoder. Notice that the data
standardization issue was not sufficiently discussed in the
publications on all the architectures mentioned in Table 2.
Therefore, results for the ReFactor and HyFactor architectures
are given for both initial15 (non-standardized) and stand-
ardized data sets. In addition, results for training and validation
sets for model overfitting analysis are also reported.
The reconstruction rate for ReFactor obtained on the initial

data set is slightly better than that of the standardized data set.
This fact supports our assumption that the performance of
autoencoder may be overestimated since training and test sets
partially overlap in the non-standardized data. As it follows
from Table 1, ReFactor outperforms DEFactor on the initial
data set.

The HyFactor architecture has almost the same reconstruc-
tion rate as ReFactor but has a smaller number of neural
network parameters (10M compared to 12M in ReFactor).
The training time for HyFactor was 2 h and 45 min. (with 5
GB of GPU RAM allocated), while for ReFactor, it was 4 h and
10 min. (with 5.5 GB of GPU RAM allocated).
Structure Generation Performance of Graph-Based

Autoencoders. The efficiency of the proposed graph-based
autoencoders to generate valid chemical structures has been
investigated on the MOSES data set using the metrics included
in the MOSES package.16 Both ReFactor and HyFactor
architectures were trained on 80% of the MOSES training set
and achieved more than 99% of the reconstruction rate on the
remaining 20% of the data used as a validation set. Then, 10 K
compounds were randomly selected as seeds for sampling new
structures. For each seed compound, 10 virtual structures were
generated, so 100K structures were obtained. The generation
was based on a log-normal distribution with a mean equal to
0and a standard deviation ranging from 0.2 to 1.0 with a step
of 0.2. Since the original DEFactor source code was not
available from the original publication,11 the ReFactor
architecture was benchmarked instead.
A preliminary analysis of the results revealed that the

MOSES package did not correctly handle typical problems
frequently occurring during the structure generation: dis-
connected molecular graphs were not considered erroneous,
and some valence errors were ignored. Therefore, an additional
examination of generated structures was performed using the
CGRtools package.21 The results of the analysis of STD
influence on validity, uniqueness, and novelty metrics of the
generated structures are given in Table 2.
One can see that the increase in standard deviation leads, on

one hand, to the rise of the percentage of new molecules and
to the decrease of validity on the other hand. We notice the
difference between original and modified workflows for validity
checks caused mainly by the trend to return disconnected
graphs by ReFactor and HyFactor at high STD, which

Table 1. ZINC 250K Reconstruction Benchmarking
Resultsa

reconstruction rate (%)

architecture
name

molecular
representation

training
set

validation
set

test
set

TSGCD9 molecular graph 90.5
DEFactor11 molecular graph 89.8
JTVAE12 molecular graphb 76.7
rebalanced
VAE30

SMILES 92.7

all SMILES31 SMILES 87.6
SDVAE32 SMILES 76.2
ReFactor molecular graph 99.5 90.8 90.7
ReFactorc molecular graph 99.7 90.0 90.0
HyFactor HLG 99.3 89.3 89.0
HyFactorc HLG 99.2 89.8 88.4
aReconstruction rate values for other architectures are taken from the
original publications. bJTVAE uses hierarchical fragments instead of
atoms to reconstruct the molecule. cAdditional standardization and
duplicate data removal have been applied to the initial ZINC 250K
data set.15

Table 2. MOSES Metricsa Calculated for the 100 K
Structures Generated with Different Standard Deviations
(STDs)d

validity uniqueness novelty

STD originalb modifiedc originalb modifiedc originalb modifiedc

ReFactor
0.2 0.997 0.996 0.656 0.105 0.074 0.042
0.4 0.921 0.886 0.748 0.265 0.634 0.578
0.6 0.698 0.503 0.948 0.730 0.875 0.814
0.8 0.540 0.149 0.998 0.971 0.978 0.855
1 0.516 0.022 0.961 1.000 0.999 0.983

HyFactor
0.2 1.000 0.9880 0.661 0.193 0.117 0.006
0.4 0.989 0.7290 0.795 0.267 0.729 0.129
0.6 0.940 0.1820 0.980 0.634 0.923 0.288
0.8 0.886 0.0120 1.000 0.966 0.993 0.491
1 0.822 0.0003 0.981 1.000 1.000 0.912
aValidity is a fraction of valid molecules compared to generated ones.
Uniqueness (or Unique 10K) is defined as a fraction of the first 10K
unique molecules among the valid ones. Novelty is a fraction of the
novel generated molecules among unique ones. bMetrics calculated by
the MOSES package. cMetrics calculate by CGRtools after removal of
structures with valence errors and disconnected graphs. dResults for
STD = 0.4 selected for further tests are shown in italics.
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Table 3. Results of MOSES Benchmarking for Different Autoencoders; the Similarity Metrics FCD, SNN, and Scafa Relate a
Set of Generated Structures with the MOSES Test Setd

model validity uniqueness novelty FCD SNN Scaf IntDiv

AAE 0.937 0.997 0.793 0.556 0.608 0.902 0.856
VAE 0.977 0.998 0.695 0.099 0.626 0.939 0.856
JTVAE 1.000 1.000 0.914 0.395 0.548 0.896 0.855
ReFactorb 0.886 0.265c 0.578 1.743 0.547 0.847 0.868
HyFactorb 0.729 0.267c 0.129 0.365 0.614 0.862 0.860

aThe MOSES benchmarking parameters:16 Scaf is a cosine similarity based on the occurrence of Bemis−Murcko scaffolds in the compared sets.
SNN is an average Tanimoto similarity calculated with Morgan fingerprints between a molecule from the generated set and its nearest neighbor
from the test set. FCD is a Wasserstein-2 distance computed on vectors produced by the last layer of the ChemNet neural network between the
generated and test sets. IntDiv measures the dissimilarity of structures in the generated set calculated with Morgan fingerprints. See the Supporting
Information for details. bSampling for STD = 0.4. All metrics were calculated after the removal of structures with valence errors and disconnected
structures using the CGRtools-based workflow. cUniqueness was calculated on the entire generated data set after filtration by validity. dThe
performances of AAE, VAE (SMILES-based), and JTVAE (graph-based) architectures were taken from the article by Polykovskiy et al.16

Figure 5. Example of structures generated with ReFactor and HyFactor trained on the MOSES set. Molecules generated with a standard deviation
of <0.6 (>0.6) lie within (outside) the dashed circle. All molecules were aromatized with the ChemAxon toolbox. Each number corresponds to a
pairwise Tanimoto similarity of a given generated structure with respect to the seed assessed with the atom-centered ISIDA fragments35 involving
sequences of atoms and bonds of sizes from 2 to 4 atoms with different labeling of cyclic and acyclic bonds.
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nonetheless represent correct structures. Valid structures
generated with a high standard deviation parameter (STD ≥
0.6) are characterized by high novelty and uniqueness. The
validity of structures generated with HyFactor sharply drops
for high STD values, which is not the case of ReFactor. Thus,
one can suggest that the HyFactor latent space is more
discontinuous than that of ReFactor. We notice that the latent
space discontinuity is a quite common phenomenon for regular
autoencoders without special regularization on latent space,
like in variational autoencoders33 or application of latent
vectors for additional task solving.34

However, both architectures achieved high reconstruction
rates and reasonable values of the validity, uniqueness, and
novelty parameters at STD = 0.4 (Table 3). To compare with
other autoencoders, we used this standard deviation. The
results of MOSES benchmarking are given in Table 3, which
includes the most important metrics assessing the generation
ability of the proposed architectures. The results for all other
metrics available in the MOSES package are given in the
Supporting Information (see Table S3).
Since graphs are discrete objects, they occupy particular

positions in the continuous autoencoder latent space. The
latent vectors corresponding to invalid molecular graphs (e.g.,
disconnected structures or structures with valence mistakes) in
the latent space are located between positions of valid
molecules. While the proposed sampling method allows

systematic exploration of the chemical space, the validity of
the generated structures can hardly be controlled. Uniqueness
and novelty are lower than for other architectures as we
generate molecules in the vicinity of seed molecules.
Table 3 shows that the scaffold similarity (Scaf) of structures

generated with HyFactor and ReFactor is lower than that for
earlier reported autoencoders. Therefore, one can conclude
that new architectures are more potent for scaffold hopping,
which is crucial in de novo design. Moreover, HyFactor and
ReFactor generate molecules with rather high internal diversity
(IntDiv), characterizing a broader variety of generated
structures. Compared to all benchmarked autoencoders,
generated samples from ReFactor have the biggest Frećhet
Chemnet distance (FCD) and the smallest similarity to a
nearest neighbor (SNN). This demonstrates that the
ReFactor’s structures are more diverse with respect to the
training set than those generated with any other architecture.
Another important issue concerns the neighborhood

behavior analysis in the latent space. Thus, it is expected
that for small STDs, the distances between generated latent
vectors and the seed are rather small, which means that the
generated chemical structures are similar to the seed structure.
In order to check this hypothesis, for each of the 10K selected
seed structures, several molecules were generated with
HyFactor and ReFactor for standard deviations varying from
0.3 to 1.0 with a step of 0.02. At each step, 10 molecules were

Table 4. Training Results on the ChEMBL Data Set

number of training
parameters (M) reconstruction rate (%)

architecture batch vector length encoder decoder time per epocha (min) GPU memorya (MB) training set test set

ReFactor 1024 1024 35.7 14.8 ∼24.3 ∼ 22,845 99.8 95.2
HyFactor 1024 1024 25.3 15.1 ∼16.5 ∼ 16,755 99.7 95.0

aMeasured in a “mixed precision” mode, which is available in the TensorFlow package. In this mode, a 16-bit floating-point type is used where it is
possible; otherwise, a 32-bit floating-point type is applied.

Figure 6. Distributions of errors in the ChEMBL validation set as a function of molecular size for ReFactor (gold) and HyFactor (blue)
architectures trained on the (a) ChEMBL data set and (b) E_ChEMBL data set.
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generated followed by the validity and uniqueness check.
These simulations resulted, on average, in 10 and 40 generated
structures per seed for HyFactor and ReFactor, respectively.
Generally, the neighborhood behavior is respected, that is,

most of the structures generated with a small standard
deviation (STD < 0.6) are more similar to the seed than
those generated with a large STD (Figure 5). However, even
with small STDs, ReFactor may occasionally generate very
dissimilar structures corresponding to open-chain analogues of
the cyclic seed structure. Such dissimilarity explains high FCD
and low SNN scores observed for ReFactor compared to
HyFactor and other considered architectures.
Data Augmentation: Case Study of the ChEMBL

Database. The Achilles’ heel of graph-based autoencoders is
the reconstruction of molecules with a large number of atoms.
Indeed, the probability of error in predicting the atom or bond
type increases with molecular size. In this section, we
demonstrate how data augmentation may help solve this
problem. The experiments with ReFactor and HyFactor were
performed on the ChEMBL database containing molecules
bearing up to 50 heavy atoms. The results of training are given
in Table 4 and specifications of training parameters are
reported in the Supporting Information (Table S2).
According to Table 4, HyFactor uses 20% fewer training

parameters than ReFactor in order to achieve a similar
reconstruction rate, and thus, its training is 33% faster than
ReFactor. Although the overall reconstruction rate of both
networks is high enough, the reconstruction error sharply
increases for molecules containing more than 35 atoms and it
reaches almost 30% for ReFactor and HyFactor for molecules
containing 50 atoms (Figure 6a). The latter can be explained
by the small number of heavy molecules present in the training
set (see Figure 1).
In order to confirm these suggestions, 460K virtual

structures containing >35 atoms were generated using the
Synt-On tool (former SynthI)36 and then added to the
ChEMBL set. These structures were generated using a special
protocol insisting their similarity to related heavy ChEMBL
molecules and synthetic feasibility; see details in the
Supporting Information. The enriched ChEMBL set
(E_ChEMBL) was then divided into training and test sets in
the ratio 4:1 containing 1.6M and 420K structures,
respectively. The distribution of molecular size in the obtained
data set is given in Figure 1. Both architectures trained on the
E_ChEMBL training set achieved reconstruction rates of
>95% measured on the E_ChEMBL test set. The enrichment
of the initial data set significantly reduced the reconstruction
error of heavy molecules: for the molecules containing 50
atoms from ChEMBL, this value drops from some 25% for the
models trained on ChEMBL (Figure 6a) to around 7% for the
models trained on E_ChEMBL.

■ CONCLUSIONS
Neural network architecture HyFactor, which uses a hydrogen-
count labeled graph as a chemical structure representation, has
been developed. In this graph, implicit hydrogen atom counts
are used instead of bond types, like in the InChI linear
notation. Such a representation allows avoiding most of the
problems of molecule standardization (aromatization, func-
tional group standardization, and representation of Kekule
structures) that make HyFactor insensible to molecule
representation specifics.

For the sake of comparison, we have implemented the
ReFactor architecture based on a classical molecular graph. It
represents an updated and optimized version of the previously
published DEFactor architecture, which uses defactorization of
the adjacency matrix for graph generation. Since the latter
proceeds in a single-shot manner without autoregressive bond
and atom addition, the architecture is time and resource-
economic.
Both ReFactor and HyFactor networks demonstrated high

(>90%) reconstruction rates both in ZINC250K and ChEMBL
datasets, which is similar to (or even better than) earlier
reported graph-based or SMILES-based approaches. While the
HyFactor architecture achieved the same reconstruction rate as
ReFactor, it was also more effective in terms of the network
parameters and training time.
Analysis of the dependency of reconstruction rates of

HyFactor and ReFactor on molecular size revealed that, for
molecules containing more than 35 atoms, the fraction of
errors starts to grow, achieving almost 25% for molecules with
50 atoms. We hypothesized that this was related to the
underrepresentation of such large molecules in the training
dataset. Significant loss on the error rate on large molecules to
7% for the models trained on the dataset enriched by rationally
generated virtual molecules supported this hypothesis. We
believe that such a problem can be common for other graph-
or SMILES-based autoencoders and encourage adding
corresponding tests in generative chemistry benchmarking
tools.
Both HyFactor and ReFactor can be used for efficient

generation of new chemical structures. Since no special
regularization of the latent space was used, vectors
corresponding to new structures have been sampled around
selected training set molecules. Novelty and uniqueness of
generated structures increase as a function of the noise level,
but the structures’ validity drops in the same direction. In the
MOSES benchmark, the structures generated by proposed
architectures are characterized by greater diversity and scaffold
novelty compared to those generated with the help of some
other state-of-the-art approaches. This makes the proposed
approaches especially promising for constrained molecule
generation.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00744.

Detailed information about data sets used and some
complementary modeling results (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
Timur Madzhidov − Laboratory of Chemoinformatics and
Molecular Modeling, Butlerov Institute of Chemistry, Kazan
Federal University, 420008 Kazan, Russia; orcid.org/
0000-0002-3834-6985; Email: Timur.Madzhidov@kpfu.ru

Alexandre Varnek − Laboratory of Chemoinformatics, UMR
7140 CNRS, University of Strasbourg, 67081 Strasbourg,
France; orcid.org/0000-0003-1886-925X;
Email: varnek@unistra.fr

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3532

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00744/suppl_file/ci2c00744_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00744/suppl_file/ci2c00744_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00744?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00744/suppl_file/ci2c00744_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timur+Madzhidov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3834-6985
https://orcid.org/0000-0002-3834-6985
mailto:Timur.Madzhidov@kpfu.ru
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexandre+Varnek"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1886-925X
mailto:varnek@unistra.fr
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Authors
Tagir Akhmetshin − Laboratory of Chemoinformatics, UMR
7140 CNRS, University of Strasbourg, 67081 Strasbourg,
France; orcid.org/0000-0002-2549-6431

Arkadii Lin − Laboratory of Chemoinformatics, UMR 7140
CNRS, University of Strasbourg, 67081 Strasbourg, France

Daniyar Mazitov − Laboratory of Chemoinformatics and
Molecular Modeling, Butlerov Institute of Chemistry, Kazan
Federal University, 420008 Kazan, Russia

Yuliana Zabolotna − Laboratory of Chemoinformatics, UMR
7140 CNRS, University of Strasbourg, 67081 Strasbourg,
France

Evgenii Ziaikin − Laboratory of Chemoinformatics and
Molecular Modeling, Butlerov Institute of Chemistry, Kazan
Federal University, 420008 Kazan, Russia; orcid.org/
0000-0001-6316-1301

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.2c00744

Notes
The authors declare no competing financial interest.
The source code of HyFactor and all models obtained in this
study are publicly available from our GitHub repository:
https://github.com/Laboratoire-de-Chemoinformatique/
HyFactor.

■ ACKNOWLEDGMENTS
T.A. thanks the Region Grand Est. for the Ph.D. fellowship.

■ REFERENCES
(1) Varnek, A.; Baskin, I. Machine Learning Methods for Property
Prediction in Chemoinformatics: Quo Vadis? J. Chem. Inf. Model.
2012, 52, 1413−1437.
(2) Button, A.; Merk, D.; Hiss, J. A.; Schneider, G. Automated de
Novo Molecular Design by Hybrid Machine Intelligence and Rule-
Driven Chemical Synthesis. Nat. Mach. Intell. 2019, 1, 307−315.
(3) Segler, M. H. S.; Preuss, M.; Waller, M. P. Planning Chemical
Syntheses with Deep Neural Networks and Symbolic AI. Nature 2018,
555, 604−610.
(4) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-
Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A.
Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules. ACS Cent. Sci. 2018, 4, 268−276.
(5) Baskin, I. I. The Power of Deep Learning to Ligand-Based Novel
Drug Discovery. Expert Opin. Drug Discovery 2020, 15, 755−764.
(6) Simonovsky, M.; Komodakis, N. GraphVAE: Towards
Generation of Small Graphs Using Variational Autoencoders. In
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics); 2018; Vol.
11139 LNCS, pp. 412−422. DOI: 10.1007/978-3-030-01418-6_41.
(7) Kipf, T. N.; Welling, M. Semi-Supervised Classification with
Graph Convolutional Networks. 5th Int. Conf. Learn. Represent., ICLR
2017 - Conf. Track Proc. 2017, 1−14. DOI: 10.48550/
arXiv.1609.02907.
(8) Samanta, B.; De, A.; Jana, G.; Gómez, V.; Chattaraj, P. K.;
Ganguly, N.; Gomez-Rodriguez, M. NeVAE: A Deep Generative
Model for Molecular Graphs. Proc. AAAI Conf. Artif. Intell. 2019, 33,
1110−1117.
(9) Bresson, X.; Laurent, T. A Two-Step Graph Convolutional
Decoder for Molecule Generation. arXiv 2019, 1906, No. 03412.
(10) Zhou, Z.; Kearnes, S.; Li, L.; Zare, R. N.; Riley, P. Optimization
of Molecules via Deep Reinforcement Learning. Sci. Rep. 2019, 9,
10752.

(11) Assouel, R.; Ahmed, M.; Segler, M. H.; Saffari, A.; Bengio, Y.
DEFactor: Differentiable Edge Factorization-Based Probabilistic
Graph Generation. arXiv 2018, 1−14.
(12) Jin, W.; Barzilay, R.; Jaakkola, T. Chapter 11. Junction Tree
Variational Autoencoder for Molecular Graph Generation. In RSC
Drug Discovery Series; 2020; pp. 228−249. DOI: 10.1039/
9781788016841-00228.
(13) Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory.
Neural Comput. 1997, 9, 1735−1780.
(14) Heller, S. R.; McNaught, A.; Pletnev, I.; Stein, S.;
Tchekhovskoi, D. InChI, the IUPAC International Chemical
Identifier. J. Cheminf. 2015, 7, 1−34.
(15) Kusner, M. J.; Paige, B.; Hemández-Lobato, J. M. Grammar
Variational Autoencoder. 34th Int. Conf. Mach. Learn., ICML 2017
2017, 4, 3072−3084.
(16) Polykovskiy, D.; Zhebrak, A.; Sanchez-Lengeling, B.;
Golovanov, S.; Tatanov, O.; Belyaev, S.; Kurbanov, R.; Artamonov,
A.; Aladinskiy, V.; Veselov, M.; Kadurin, A.; Johansson, S.; Chen, H.;
Nikolenko, S.; Aspuru-Guzik, A.; Zhavoronkov, A. Molecular Sets
(MOSES): A Benchmarking Platform for Molecular Generation
Models. Front. Pharmacol. 2020, 11, 1−10.
(17) Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.;
Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani,
B.; Overington, J. P. ChEMBL: A Large-Scale Bioactivity Database for
Drug Discovery. Nucleic Acids Res. 2012, 40, 1100−1107.
(18) ChemAxon Ltd: Budapest, Hungary. https://chemaxon.com/
(accessed 2022-04-19).
(19) Bourlard, N.; Morgan, H. Generalization and Parameter
Estimation in Feedforward Nets: Some Experiments. In Proceedings
of the 2nd International Conference on Neural Information Processing
Systems; Touretzky, D., Ed.; Morgan-Kaufmann, 1989; pp. 630--637.
(20) Pocha, A.; Danel, T.; Podlewska, S.; Tabor, J.; Maziarka, L.
Comparison of Atom Representations in Graph Neural Networks for
Molecular Property Prediction. In 2021 International Joint Conference
on Neural Networks (IJCNN); IEEE, 2021; pp. 1−8. DOI: 10.1109/
IJCNN52387.2021.9533698.
(21) Nugmanov, R. I.; Mukhametgaleev, R. N.; Akhmetshin, T.;
Gimadiev, T. R.; Afonina, V. A.; Madzhidov, T. I.; Varnek, A.
CGRtools: Python Library for Molecule, Reaction, and Condensed
Graph of Reaction Processing. J. Chem. Inf. Model. 2019, 59, 2516−
2521.
(22) Simonovsky, M.; Komodakis, N. Dynamic Edge-Conditioned
Filters in Convolutional Neural Networks on Graphs. Proceedings -
30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017 2017,
2017-Janua, 29−38. DOI: 10.1109/CVPR.2017.11.
(23) Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling Polypharmacy
Side Effects with Graph Convolutional Networks. Bioinformatics
2018, 34, i457−i466.
(24) GoogleResearch. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. 2015. DOI: 10.5281/zenodo.5949169.
(25) Ba, J. L.; Kiros, J. R.; Hinton, G. E. Layer Normalization. arXiv
2016, DOI: 10.48550/arXiv.1607.06450.
(26) Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representa-
tions Using RNN Encoder-Decoder for Statistical Machine Trans-
lation. In EMNLP 2014−2014 Conference on Empirical Methods in
Natural Language Processing, Proceedings of the Conference; Association
for Computational Linguistics: Stroudsburg, PA, USA, 2014; pp.
1724−1734. DOI: 10.3115/v1/d14-1179.
(27) He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers:
Surpassing Human-Level Performance on Imagenet Classification. In
Proceedings of the IEEE International Conference on Computer Vision;
IEEE, 2015; Vol. 2015 Inter, pp. 1026−1034. DOI: 10.1109/
ICCV.2015.123.
(28) Zhuang, J.; Tang, T.; Ding, Y.; Tatikonda, S.; Dvornek, N.;
Papademetris, X.; Duncan, J. S. AdaBelief Optimizer: Adapting
Stepsizes by the Belief in Observed Gradients. Adv. Neural Inf. Process.
Syst. 2020, 2020, 1−29.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3533

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tagir+Akhmetshin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2549-6431
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Arkadii+Lin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniyar+Mazitov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuliana+Zabolotna"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Evgenii+Ziaikin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6316-1301
https://orcid.org/0000-0001-6316-1301
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00744?ref=pdf
https://github.com/Laboratoire-de-Chemoinformatique/HyFactor
https://github.com/Laboratoire-de-Chemoinformatique/HyFactor
https://doi.org/10.1021/ci200409x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci200409x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s42256-019-0067-7
https://doi.org/10.1038/s42256-019-0067-7
https://doi.org/10.1038/s42256-019-0067-7
https://doi.org/10.1038/nature25978
https://doi.org/10.1038/nature25978
https://doi.org/10.1021/acscentsci.7b00572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.7b00572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/17460441.2020.1745183
https://doi.org/10.1080/17460441.2020.1745183
https://doi.org/10.1007/978-3-030-01418-6_41
https://doi.org/10.1007/978-3-030-01418-6_41
https://doi.org/10.1007/978-3-030-01418-6_41?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1609.02907?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.1609.02907?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1609/aaai.v33i01.33011110
https://doi.org/10.1609/aaai.v33i01.33011110
https://doi.org/10.48550/arXiv.1906.03412
https://doi.org/10.48550/arXiv.1906.03412
https://doi.org/10.1038/s41598-019-47148-x
https://doi.org/10.1038/s41598-019-47148-x
https://doi.org/10.48550/arXiv.1811.09766
https://doi.org/10.48550/arXiv.1811.09766
https://doi.org/10.1039/9781788016841-00228
https://doi.org/10.1039/9781788016841-00228
https://doi.org/10.1039/9781788016841-00228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/9781788016841-00228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1186/s13321-015-0068-4
https://doi.org/10.1186/s13321-015-0068-4
https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1093/nar/gkr777
https://chemaxon.com/
https://doi.org/10.1109/IJCNN52387.2021.9533698
https://doi.org/10.1109/IJCNN52387.2021.9533698
https://doi.org/10.1109/IJCNN52387.2021.9533698?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/IJCNN52387.2021.9533698?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/CVPR.2017.11
https://doi.org/10.1109/CVPR.2017.11
https://doi.org/10.1109/CVPR.2017.11?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.5281/zenodo.5949169?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.48550/arXiv.1607.06450?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/ICCV.2015.123?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(29) Sattarov, B.; Baskin, I. I.; Horvath, D.; Marcou, G.; Bjerrum, E.
J.; Varnek, A. De Novo Molecular Design by Combining Deep
Autoencoder Recurrent Neural Networks with Generative Topo-
graphic Mapping. J. Chem. Inf. Model. 2019, 59, 1182−1196.
(30) Yan, C.; Wang, S.; Yang, J.; Xu, T.; Huang, J. Re-Balancing
Variational Autoencoder Loss for Molecule Sequence Generation.
Proc. 11th ACM Int. Conf. Bioinformatics, Comput. Biol. Heal.
Informatics, BCB 2020 2020. DOI: 10.1145/3388440.3412458.
(31) Alperstein, Z.; Cherkasov, A.; Rolfe, J. T. All SMILES
Variational Autoencoder. arXiv 2019. DOI: 10.48550/
arXiv.1905.13343.
(32) Dai, H.; Tian, Y.; Dai, B.; Skiena, S.; Song, L. Syntax-Directed
Variational Autoencoder for Structured Data. 6th Int. Conf. Learn.
Represent. ICLR 2018 - Conf. Track Proc. 2018, 1−17.
(33) Kingma, D. P.; Welling, M. Auto-Encoding Variational Bayes.
2nd Int. Conf. Learn. Represent. ICLR 2014 - Conf. Track Proc. 2014,
1−14.
(34) Winter, R.; Montanari, F.; Noé, F.; Clevert, D. A. Learning
Continuous and Data-Driven Molecular Descriptors by Translating
Equivalent Chemical Representations. Chem. Sci. 2019, 10, 1692−
1701.
(35) Varnek, A.; Fourches, D.; Horvath, D.; Klimchuk, O.; Gaudin,
C.; Vayer, P.; Solov’ev, V.; Hoonakker, F.; Tetko, I.; Marcou, G.
ISIDA - Platform for Virtual Screening Based on Fragment and
Pharmacophoric Descriptors. Curr. Comput.-Aided Drug Des. 2008, 4,
191−198.
(36) Zabolotna, Y.; Volochnyuk, D. M.; Ryabukhin, S. V.;
Gavrylenko, K.; Horvath, D.; Klimchuk, O.; Oksiuta, O.; Marcou,
G.; Varnek, A. SynthI: A New Open-Source Tool for Synthon-Based
Library Design. J. Chem. Inf. Model. 2022, 62, 2151−2163.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00744
J. Chem. Inf. Model. 2022, 62, 3524−3534

3534

 Recommended by ACS

Exploration of Chemical Space Guided by PixelCNN for
Fragment-Based De Novo Drug Discovery
Satoshi Noguchi and Junya Inoue
DECEMBER 01, 2022
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

MACAW: An Accessible Tool for Molecular Embedding and
Inverse Molecular Design
Vincent Blay, Hector Garcia Martin, et al.
JULY 20, 2022
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

DRlinker: Deep Reinforcement Learning for Optimization in
Fragment Linking Design
Youhai Tan, Yuedong Yang, et al.
NOVEMBER 20, 2022
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

Molecular Design Method Using a Reversible Tree
Representation of Chemical Compounds and Deep
Reinforcement Learning
Ryuichiro Ishitani, Kentaro Rikimaru, et al.
AUGUST 12, 2022
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

Get More Suggestions >

https://doi.org/10.1021/acs.jcim.8b00751?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.8b00751?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.8b00751?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1145/3388440.3412458
https://doi.org/10.1145/3388440.3412458
https://doi.org/10.1145/3388440.3412458?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.1905.13343
https://doi.org/10.48550/arXiv.1905.13343
https://doi.org/10.48550/arXiv.1905.13343?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.1905.13343?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/c8sc04175j
https://doi.org/10.1039/c8sc04175j
https://doi.org/10.1039/c8sc04175j
https://doi.org/10.2174/157340908785747465
https://doi.org/10.2174/157340908785747465
https://doi.org/10.1021/acs.jcim.1c00754?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00754?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c01345?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00229?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00982?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
http://pubs.acs.org/doi/10.1021/acs.jcim.2c00366?utm_campaign=RRCC_jcisd8&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678412706&referrer_DOI=10.1021%2Facs.jcim.2c00744
https://preferences.acs.org/ai_alert?follow=1

